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The true nature of the extended connectivity, used in Morgan algorithm for 
the canonical numerotation of points in chemical graphs, is discussed. An 
alternative method for its calculation based on the number of walks is 
described and shown to yield results identical to Morgan's method. 
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1. Introduction 

The notion of extended connectivity (EC) was first introduced by Morgan [1] 
in his search for a unique canonical name of a given chemical structure. While 
the connectivity (i.e. the number of nonhydrogen neighbours of points in a graph) 
itself divides the points of a graph in at most four classes, the EC makes possible 
a finer differentiation, dividing the points into more than four classes. This 
statement implies that the graph in question represents the skeleton of a 
molecular structure, pruned of its hydrogen atoms and containing only atoms 
whose valence is less or equal to 4. 

The Morgan algorithm has been extensively used in the generation of canonical 
connection tables which form the backbone of the Chemical Abstract Service 
structural data bank, the largest existing bank of this type. Morgan's method of 
numerotation of points in graphs was further modified and developed by several 
authors [2, 3]. 

In this paper we intend to show that the introduction and use of a new graph 
invariant, the EC, by Morgan and other cited authors was not necessary. Another 
topological characteristic, the number of walks in a graph, known in theory 
before the EC [4], assigns to the points of graphs identical numerical values as 
does the EC itself. 
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2. Calculation of Extended Connectivity 

M. Razinger 

2.1. Morgan's and Related Methods 

Starting with the set of connectivities of all points in a graph, Morgan's method 
[1] consists of a pragmatic iterative summation of connectivities of all neighbours 
of each point in turn resulting in a new set of connectivities, called EC. The 
procedure of calculation for an octane isomer is shown in Fig. 1. 

The parameter K denotes the number of classes into which the points are divided 
according to their EC values. The parameter determines where the iterative 
procedure has to be stopped. We shall not discuss further the principles of 
numerotation as they are given in detail in the original article [1] and are in fact 
irrelevant to our findings. 

Wipke and Dyott [2] have modified Morgan algorithm to give a stereochemically 
selective and unique name of a given molecular structure. Their algorithm for 
the numerotation differs of the Morgan's in the treatment of end-points which 
conserve their initial connectivity value of 1 throughout the iterative procedure, 
but nevertheless, the principle of calculation of EC values remains the same as 
in Morgan's method. 

Another interpretation of the Morgan algorithm and its relations to graph 
potentials were published recently [5]. 

2.2. Alternative Method 

Studying various topological descriptors of chemical structures and the possi- 
bilities of their automatic computer generation [6], starting from the adjacency 
matrix A of corresponding graphs, we focused our attention to the higher powers 
of A, i.e. A 2, A 3, . . ., A N (N being the number of points in the graph). Besides 
many graph-theoretical properties, known to be deducible from these powers 
A t [4, 7], we found that the EC values of points, calculated in the ith iteration 
of Morgan's procedure, can be deduced directly from the ith power of A. Powers 
of the adjacency matrix of the same graph as that in Fig. 1 are shown on the 
computer printout in Fig. 2. 

The EC values of points are calculated as straightforward sums of the correspond- 
ing rows (or columns, as A and its powers are symmetrical) of the matrices. 
These sums are shown in the column on the right in Fig. 2 alongside the matrices 
from which they are calculated. Although the numerotation of points does not 
influence the results, an arbitrary numerotation, shown above the computer 
listing, was chosen for the sake of clarity of presentation. 

3. Conclusion 

It is known [4, 7] that the value of element a (i,/) of the kth power of adjacency 
matrix A is equal to the number of all possible walks of length k, starting from 
point i and ending in point/. The sum of these elements a (i,/) over all values 
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Extended Connectivity in Chemical Graphs 

Matrix of power 4 

i/j 1 2 3 4 5 6 7 8 

1 2 0 5 0 0 0 1 0  

2 0 7 0 5 5 6 0 1  

3 5 0 1 8 0 0 0 6 0  

4 0 5 0 4 4 5 0 1  

5 0 5 0 4 4 5 0 1  

6 0 6 0 5 5 8 0 3  

7 1 0 6 0 0 0 5 0  

8 0 1 0 1 1 3 0 2  

Sum a(i, j) 
(j = 1, . .  8) 

8 

24 

29 

19 

19 

27 

12 

8 

585 

Matrix of power 5 

i/j 1 2 3 4 5 6 7 8 

1 0 7 0 5 5 6 0 1 

2 7 0 2 3  0 0 0 7 0 

3 0 2 3  0 1 8 1 8 2 4  0 6 

4 5 0 1 8  0 0 0 6 0 

5 5 0 1 8  0 0 0 6 0 

6 6 0 2 4  0 0 0 1 1  0 

7 0 7 0 6 6 1 1  0 5 

8 1 0 6 0 0 0 5 0 

Sum a(i, j) 
(i = 1, . .  8) 

24 

37 

89 

29 

29 

41 

35 

12 

Classification of points 

1 2 3 4 5 
K = 3  K = 5  K = 6  K = 6  K = 7  

1 2 5 8 24 
2 5 8 24 37 
4 6 19 29 89 
I 4 6 19 29 
1 4 6 19 29 
2 6 9 27 41 
2 3 8 12 35 
1 2 3 8 12 

Fig. 2 (cont.) 

of  j (i.e. t h e  s u m  of  t h e  i th row)  g ives  t h e  n u m b e r  of  all  poss ib l e  wa lks  of  l e n g t h  

k f r o m  p o i n t  i to al l  o t h e r  p o i n t s  in a ( c o n n e c t e d )  g r aph .  T h i s  is t r u e  fo r  cycl ic  

g r a p h s  as w e l l  as fo r  t h e  t r ee s  o n e  of  w h i c h  was  u s e d  fo r  t h e  d e m o n s t r a t i o n  o f  

o u r  a l t e r n a t i v e  of  M o r g a n  a l g o r i t h m .  A s  t h e  E C  v a l u e s  of  po in t s ,  c a l c u l a t e d  by  

t h e  n o w  class ica l  a l g o r i t h m ,  a r e  exac t l y  t h e  s a m e  as t h o s e  o b t a i n e d  by  t h e  

e n u m e r a t i o n  of  wa lks  of  c o r r e s p o n d i n g  l eng th ,  t he  c o n c l u s i o n  is e v i d e n t :  t h e  

i n t r o d u c t i o n  of  a n e w  g r a p h  i nva r i an t ,  i .e. t h e  E C ,  was  in fac t  s u p e r f l u o u s  s ince  
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a previously defined graph invariant can be used for the identical canonical 
nurnerotation of points in graphs. 
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